
Network Flow

Algorithm Design

Greedy Divide and
Conquer

Dynamic
Programming

Formulate problem ? ? ?

Design algorithm less work more work more work

Prove correctness more work less work less work

Analyze running time less work more work less work

Network Flow

Greedy, Divide-and-Conquer, and Dynamic
Programming were design techniques

Network flow → a specific class of problems.

Useful in many different applications!
(matching, transportation, network design, etc.)

Goal: design and analyze algorithms for max-flow
problem, then apply to solve other problems

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Flow network.
Abstraction for material flowing through the edges.
G = (V, E) = directed graph
Two distinguished nodes: s = source, t = sink.
c(e) = capacity of edge e.

Flow Networks

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4
capacity

source sink

An s-t flow is a function f: E→ R+ that satisfies:
Capacity condition: For each e ∈ E: !0 ≤ f(e) ≤ c(e)
Conservation condition: For each v ∈ V – {s, t}: !
∑ f(e) = ∑ f(e)

Flows

e into v e out of v

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 4 4

4
4

0

0

0

0

0

0

0

0

0 0

0

The value of a flow f is: v(f) = ∑ f(e)

Flows

e out of s

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 4 4

4
4

0

0

0

0

0

0

0

0

0 0

0

value = 4

The value of a flow f is: v(f) = ∑ f(e)

Flows

e out of s

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 10 0

0
9

4

10

9

1

0

6

1

10

0 9

6

value = 24

Find s-t flow of maximum value.

Maximum Flow Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

10

 8

 15

 9

 6 10

 10

10 15 4

 4

source sink

flow = 10 1

0
10

5

13

9

0

0

8

3

13

0 9

9

value = 28

Towards a Max Flow Algorithm
Greedy algorithm.

Start with f(e) = 0 for all edges e ∈ E.
Find an s-t path P where each edge has f(e) < c(e).
Augment flow along path P.
Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

Towards a Max-Flow
Algorithm

Key idea: repeatedly choose paths and
“augment” the amount of flow on those paths
as much as possible until capacities are met

Towards a Max Flow Algorithm
Greedy algorithm.

Start with f(e) = 0 for all edges e ∈ E.
Find an s-t path P where each edge has f(e) < c(e).
Augment flow along path P.
Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

×

×

×

20

20

20

×20

Optimal Solution

s

1

2

t

10

10

10

10

20

20

30

Flow value = 30

20

20

10

Problem
To fix the greedy algorithm, we need a way to track:
(1) how much more flow can we send on any edge?
(2) how much flow can we “undo” on each edge?

s

1

2

t

10

10

0

0

20

20

30

20

20

20

Residual Graph
Original edge: e = (u, v) ∈ E.

Flow f(e), capacity c(e).

Create two residual edges
“Forward edge”
e = (u, v) with capacity c(e) - f(e)
“Backward edge”
e’ = (v, u) with capacity f(e)

Residual graph: Gf = (V, Ef).
Ef = edges with positive residual capacity
Ef = {e : f(e) < c(e)} ∪ {e’ : f(e) > 0}

u v 17
6

u v 11

residual
capacity

 6

Augmenting Path

Augment(f, P) {
 b = bottleneck(P)
 foreach e = (u,v) ∈ P {
 if e is a forward edge
 f(e) = f(e) + b
 else
 let e’ = (v, u)
 f(e’) = f(e’) - b
 }
 return f
}

// edge on P with least residual capacity

Use path P in Gf to to update flow in G

// forward edge: increase flow

// backward edge: decrease flow

Example on board

Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t) {
 foreach e ∈ E f(e) = 0 // initially, no flow
 Gf = copy of G // residual graph = original graph

 while (there exists an s-t path P in Gf) {
 f = Augment(f, P) // change the flow
 update Gf // build a new residual graph
 }
 return f
}

Repat: find an augmenting path, and augment!

Next Time

Termination and running time (easy)

Correctness: Max-Flow Min-Cut Theorem

